Inhibition of mTORC1 kinase activates Smads 1 and 5 but not Smad8 in human prostate cancer cells, mediating cytostatic response to rapamycin.
نویسندگان
چکیده
Although hyperactivated mTOR is well recognized as being pivotal to prostate cancer growth and progression, the underlying mechanisms by which it promotes such responses remain incompletely understood. Here, we show that rapamycin activates Smads 1 and 5 in human prostate cancer cells and tissues through blocking mTORC1 kinase. Small hairpin RNA-based gene silencing and gene overexpression approaches reveal that Smads 1 and 5 mediate, whereas Smad8 represses, rapamycin-induced cell death and expression of the bone morphogenetic protein (BMP) transcriptional target Id1 in human prostate cancer cell lines. Moreover, such phospho-Smad1/5-mediated rapamycin responses were blocked by LDN-193189 (a BMPRI kinase inhibitor) or Noggin (a BMP antagonist) in LNCaP prostate cancer cells. Likewise, the mTOR kinase inhibitors Ku-0063794 and WYE-354 each enhanced phosphorylation of Smad1/5. Intriguingly, silencing raptor alone enhanced, whereas silencing rictor repressed, the phosphorylation of Smad1/5, indicating that mTORC1 represses, whereas mTORC2 activates, BMP signaling. Immunohistochemical analysis showed increased levels of phospho-Smad1/5 concomitant with suppression of phospho-S6 and survivin levels in PC3 human prostate cancer xenografts in athymic mice administered rapamycin (intraperitoneally, 5 mg/kg/d, 2-6 days). Moreover, we show that compared with prostate tumor tissue from untreated patients, levels of phospho-Smad1/5 were significantly elevated in the prostate tumor tissue of patients with high-risk prostate cancer who received 8 weeks of the rapalog everolimus as part of a neoadjuvant clinical trial before undergoing local definitive therapy by radical prostatectomy. Taken together, our data implicate Smads 1, 5 and 8 as potential prognostic markers and therapeutic targets for mTOR inhibition therapy of prostate cancer.
منابع مشابه
Signaling and Regulation Inhibition of mTORC1 Kinase Activates Smads 1 and 5 but Not Smad8 in Human Prostate Cancer Cells, Mediating Cytostatic Response to Rapamycin
Although hyperactivated mTOR is well recognized as being pivotal to prostate cancer growth and progression, the underlying mechanisms by which it promotes such responses remain incompletely understood. Here, we show that rapamycin activates Smads 1 and 5 in human prostate cancer cells and tissues through blocking mTORC1 kinase. Small hairpin RNA–based gene silencing and gene overexpression appr...
متن کاملSesterin as a biomolecule
Sestrins (Sesns), highly conserved stress-inducing metabolic proteins, are known to protect organisms against various harmful stimuli including DNA damage, oxidative stress, endoplasmic reticulum (ER) stress, and hypoxia. Sestrins regulate metabolism mainly through activation of AMP-dependent protein kinase (AMPK) and inhibition of rapamycin complex 1 (mTORC1). Sestrins also play a pivotal role...
متن کاملReceptor-Recognized α2-Macroglobulin Binds to Cell Surface-Associated GRP78 and Activates mTORC1 and mTORC2 Signaling in Prostate Cancer Cells
OBJECTIVE Tetrameric α(2)-macroglobulin (α(2)M), a plasma panproteinase inhibitor, is activated upon interaction with a proteinase, and undergoes a major conformational change exposing a receptor recognition site in each of its subunits. Activated α(2)M (α(2)M*) binds to cancer cell surface GRP78 and triggers proliferative and antiapoptotic signaling. We have studied the role of α(2)M* in the r...
متن کاملRadiosensitizing effects of Sestrin2 in PC3 prostate cancer cells
Objective(s): The stress-responsive genes of Sestrin family are recognized as new tumor suppressor genes in breast carcinoma, however, the function of Sestrin family in human prostate cancer is not clear. Ionizing radiation (IR) is known to induce Sestrin gene expression in breast cancer cells. However, the response of Sestrin to IR has not been reported in PC3 prostate cancer cells. Materials ...
متن کاملMicrotubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) is a negative regulator of the mammalian target of rapamycin complex 1 (mTORC1).
The mammalian target of rapamycin (mTOR) is a central cell growth regulator. It resides in two protein complexes, which in mammals are referred to as mTORC1 and mTORC2. mTORC1, which is directly inhibited by rapamycin, promotes cell growth by stimulating protein synthesis and inhibiting autophagy. A wide range of extra and intracellular signals, including growth factors, nutrients, energy level...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2012